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Abstract: The homogeneous, intensity modulated salinity sensor using the photonic crystal ring 
resonator (PCRR) is proposed and designed for monitoring the salinity of the seawater from 0% to 
100% (0 g/L to 100 g/L) at 25 ℃. The concentration of the salinity in the seawater changes the 
refractive index of the seawater. The change in the refractive index of the seawater brings the change 
in the output signal intensity of the sensor as the seawater flows inside the sensor. By detecting the 
output power and mapping the salinity level, the salinity can be evaluated. The proposed sensor is 
composed of periodic Si rods embedded in an air host with a circular PCRR placed between the 
inline quasi waveguides. Approximately, 2.69% of output power reduction is observed for every 5% 
(5 g/L) increase in the salinity as the seawater has a unique refractive index for each salt level. With 
this underlying principle, the performance of the sensor is analyzed for different temperatures. 
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1. Introduction 

Salinity measurement is very important and 

critical for many industrial fields, such as marine 

environment monitoring, seasonal climate prediction, 

military engineering, solar engineering, fishing, 

offshore oil exploration [1]. Further, it is also 

commonly used to measure the density of the 

seawater. Therefore, the research on the salinity 

measurement is one of the areas which are attracting 

much attention of researchers. 

In the past, several techniques were proposed for 

determining the salinity. In general, the salinity can 
be measured either by physical methods or by 
chemical methods [2]. In physical methods, people 

use conductivity, density and refractivity phenomena 
for measurements, whereas in chemical methods 
people determine sodium chloride (NaCl), and 

magnesium (Mg) concentration presented in the 

seawater where the concentration of NaCl is related 

to the salinity [2]. Physical methods are quicker and 
more convenient. Since physical methods are 
associated with electrical measurements, they can 

also be affected by electrical interference. This 
problem could be avoided by using optical 
techniques for determining and monitoring the 

salinity of the seawater. 
Generally, with optical sensors for the salinity 

measurement, the refractive index of the seawater is 

considered here, and the high sensitive refractive 
index dependent sensor is required to determine the 
salinity. Recently, fiber optic sensors have attracted 

the keen attention due to their unique properties 
such as immunity to electromagnetic interference, 
high sensitivity, small sensing unit, safety in hazards 

or explosive environments, the possibility of 
processing the signal at large distances and the 
ability to work under high temperature, high voltage 
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and high pressure conditions [3, 4]. 
For sensing the salinity of the seawater, so far, 

the researchers have been using fiber optic cable [5], 
fiber optic array [1], surface plasmon resonance 

(SPR) [6], fiber Bragg grating (FBG) [7] and 
Fabry-Perot interferometer [8] etc., on the basis of 
beam deviation, refraction, density and composite 

variation due to the change in the refractive index. 
In the reported salinity sensor based on the intensity, 
the normalized detected output power was low for 

the input power of 1mW. Hence, the attempt was 
made here to enhance the intensity (output power), 
Q factor and also to reduce the size of the sensor 

using the photonic crystal ring resonator (PCRR).  
Photonic crystals (PCs) are periodic 

nanostructure or artificial materials in which a 

periodic variation of the material dielectric constant 
(refractive index) results in a photonic band gap 
(PBG). By introducing the defects, it is possible to 

localize the light in the PBG region [9]. The PC 
provides a good solution to enable extremely small 
ring resonator with ultra low bending loss and 

propagation loss owing to the excellent light 
confinement [10]. In the literature, PC/PCRR based 
sensors were reported for chemical [11], biosensing 

[12], force, strain and pressure sensing applications 
[13–16], civil, geotechnical [17], also for aqueous 
environment [18] and underwater acoustic 

measurement [19] etc.  
In this paper, a sensor for sensing the salinity of 

the seawater is proposed and designed based on two 

dimensional (2D) circular PCRR. The capability of 
sensing the salinity of the sensor from 0% to 100%            
(0 g/L to 100 g/L) is theoretically examined at the 

temperature of 25 ℃. Finally, the variation of the 
output power with respect to the salinity at different 
temperatures is also discussed.  

2. Sensing principle  

At the constant temperature, each level of the 
salinity of the seawater has a unique associated 
refractive index. It increases by 0.00092% for every 

5% (5 g/L) increase in the salinity [20]. Owing to the 

variation in the refractive index (0.00092%), the 
output power level (2.69%) in inline quasi 
waveguide based sensor accordingly changes. With 
the above inherent principle, the salinity of the 

seawater can be determined by knowing the value of 
the output power. 

The sensor consists of Si pillars in an air host 

which is packaged in a fluidic channel. The seawater 
flow via the structure, and the salinity in the 
seawater alters the refractive index of the sensor 

which in turn changes the output power. By 
measuring the output power, it is possible for 
assessing the presence as well as for quantifying the 

level of the salinity in the seawater at a chosen 
temperature. 

3. Photonic crystal ring resonator 

A perfect square lattice of 21×21 PC structure is 

considered for designing the sensor. The radius of 
the rod is 0.185×a (100 nm), where “a” is the 
distance between any two nearest rods, called as the 

lattice constant. The dielectric constant of the rod is 
11.9716 (refractive index, n, is 3.46), and the lattice 
constant is selected to be 540 nm. The structure has a 

transverse magnetic (TM) photonic band gap over 
the wavelength range lying between 1241 nm and 
830 nm. 

Figure 1 depicts the schematic diagram of the 
seawater sensing with a PCRR based sensor. The 
transmitter emits the optical signal over a 

wavelength of interest to the PC based sensor which 
is placed inside the seawater. The refractive index 
variation of the seawater with respect to the salinity 

determines the output intensity available at the 
sensor output. This in turn is sent to the receiver that 
converts the optical signal to the electrical signal. 

The signal processing units map the sensed quantity 
in the readable form with the help of look-up table, 
which is displayed in the display board. 

The sensor consists of two inline quasi 
waveguides in horizontal (г-x) direction and a 
circular PCRR between them (Fig. 1). The coupling 

rod is placed either in the input side or in the output 
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side of inline quasi waveguides which is denoted as 
“i”. The structure to be used here for salinity sensing 
was already analyzed by the authors with a bandpass 
filter [21]. The arrangement of the inner rod, outer 

rod and other rods presented in the structure was 
discussed in [22]. 

B 
Output port 

“i” A 
Input  port 

Seawater 

Transmitter PC based 
sensor 

Signal 
processing 

unit 
Receiver Display

 
Fig. 1 Schematic structure of the PCRR based sensor for 

seawater sensing. 

To identify the optimum number of coupling 
rods required to be kept in the inline waveguides for 
designing the sensor, there are seven different cases 

considered. The resonant wavelength, Q factor and 
the output efficiency of those structures with 
different numbers of coupling rods are listed in 

Table 1. In Table 1, the resonant wavelength, output 
efficiency (intensity) and Q factor of the sensor 
structure with one-one coupling rod are 1590.5 nm, 

99.5% and 477.83, respectively, where one-one 
indicates that the number of coupling rods in the 
input side and output side is one, whereas two-one 

dictates that the numbers of coupling rods in the 
input side and output side are two and one, 
respectively. Similarly, two-one (with 2a) represents 

the number of coupling rods in the input side and 
output side are two and one, respectively, where 
“2a” represents the distance between the two input 

coupling rods from the cavity. It is seen that an 
increase in the number of coupling rods sufficiently 
reduces the output power at the resonant wavelength. 

However, the change in Q factor and the shift in the 
resonant wavelength are also noticed which are 
trivial in nature.  

Generally, in the waveguide based ring resonator, 

while increasing the number of coupling rods, the Q 

factor increases with the reduced output power [10]. 

However, in the inline waveguide based ring 

resonator, there is no significant variation in Q 

factor while increasing the number of coupling rods 

in the inline quasi waveguides. Hence, the structure 

with two coupling rods (one at the input port and the 

other at the output port) is considered for analyzing 

the characteristics of the sensor as it offers high 

output power (99.5%) with the sufficient Q factor 

(478).  

Table 1 Resonant wavelength, output efficiency, and Q 

factor of the structure. 

Structures with number of 

coupling rods 

Resonant wavelength  

(nm) 

Output efficiency 

(%) 
Q factor 

One-one 1590.5 99.5 477.83 

Two-one 1586.5 29 466.66 

Two-one (with 2a) 1589.0 5.2 496.56 

Two-two 1589.5 23 407.56 

Three-one 1590.0 0.29 441.66 

Three-two 1586.0 0.081 422.93 

Three-three 1589.5 0.067 400.37 

4. Evaluation of sensing characteristics 

A temporal light pulse with the input power of  

1 mW is launched into the input port (A) of the 

inline quasi waveguide. The output signal is 

recorded by the power monitor at the output port (B). 

The output power is obtained by applying the 

fast-Fourier transform (FFT) to the temporal signal 

recorded by the power monitor. The output signal 

power from the power monitor kept at the output 

port is normalized by the input signal power i.e., the 

output power is the normalized output power. 

The normalized output power with respect to the 
wavelength at the salinity of 0% at the temperature 

of 25 ℃ is shown in Fig. 2(a). Figure 2(b) shows the 
variation in normalized output spectra of the sensor 
for the salinity ranging from 0% to 100% at the 

temperature of 25 ℃. The resonant wavelength, Q 
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factor and the normalized output power of the sensor 
at the salinity of 0% are 1590.55 nm, 477.83, and 
99.5%, respectively. Approximately, 2.69% 
reduction in the output power for every 5% (5 g/L) 

increase in the salinity and 20 nm–40 pm shift in the 
resonant wavelength are observed. As the proposed 
sensor is the intensity type, the resonant wavelength 

shift is constant (20 pm–40 pm shift per 5% increase 
in the salinity is very small). The observed output 
power of the sensor is higher than the reported one. 

The observed resonant wavelength shift while 
changing the salinity from 0% to 100% is around  
0.5 nm. As the resonant wavelength shift is small 

(about 1nm), the proposed sensor operates within 
the detection range. Furthermore, the change in the 
output power for various refractive indices is highly 

sufficient to access the salinity of the seawater for a 
quite large range. 

The minimum detectable sensitivity of the 

proposed sensor is calculated by varying the 

refractive index [20] for every 0.25%, 0.5%, 0.75% 

and 1% increase in the salinity at the constant 

temperature. The detectable intensity variation 

(0.55%) is noticed at the salinity variation of 1%; 

hence, the sensitivity of the sensor becomes 1%   

(1 g/L). 

Figure 2(c) shows the output power variation 

with respect to the salinity along with the refractive 

index. It reveals that the refractive index (0.00092%) 

of the seawater increases while the salinity (5%) 

increases, and the normalized output power 

decreases linearly. 

Figure 3 depicts the output power spectra for 

different temperatures (0 ℃–25 ℃). A 0.5% increase 

of the output power is observed for every increase in 

temperature of 5 ℃. The output power variation for 

different temperatures (0 ℃–25 ℃) with respect to 

the salinity in the range from 0% to 40% is shown in 

Fig. 4. It clearly shows that the normalized output 

power decreases as the salinity of the seawater 

increases. However, it is also observed that the 

output power increases as the temperature of the 

seawater increases. 
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Fig. 2 Variation in (a) the normalized output power of the 

sensor for the salinity of 0% at the temperature of 25℃, (b) the 

normalized output power of the sensor for different salt levels at 

the temperature of 25℃, and (c) the normalized output power 

for various salinities (0%–100%) and their corresponding 

refractive indices.  
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Fig. 3 Normalized output power of the sensor at different 

temperatures (0 ℃–25 ℃). 
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Fig. 4 Variation in the output power with respect to the 

salinity of the seawater at different temperatures. 

The intensity of the proposed sensor is also 

sensitive to the temperature. Though the temperature 

of the seawater is changed, it is possible to use it for 

the salinity detection in the temperature range of the 

seawater between 0 ℃ and 25 ℃. In addition, the 

fluctuation of the optical transmission is critical to 

the real time environmental monitoring. However, it 

can be minimized by choosing the prober fabrication 

and packaging techniques in the near future. 

5. Conclusions 

A sensor is proposed and designed for sensing 
the salinity of the seawater using two dimensional 

photonic crystal based circular ring resonator. At the 
temperature of 25 ℃ , the observed resonant 
wavelength, quality factor and output power of the 
sensor are 1590.55 nm, 477.83, and 99.5%, 

respectively. It is noticed that there is 2.69% output 
power reduction for every 5% increase in the 
salinity which is highly sufficient for measuring the 

salinity of the seawater. The minimum detectable 
sensitivity and dynamic range of the proposed 
salinity sensor are 1% (1 g/L) and 100%, and the 

relevant temperatures are 5 ℃  and 25 ℃ , 
respectively. Further, the change in the output 
powers of different temperatures with various 

salinity levels is also computed. This type of sensors 
could be deployed for the real time environmental 
monitoring. 
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